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Abstract

T he proteins, DNA and RNA interaction networks govern various biological functions in living cells these networks

should be dynamically robust in the intracellular and environmental fluctuations. Here. we use Boolean network to study the robust struc-

ture of both genetic and logic netw orks. First, SOS network in bacteria E. coli, which reguhtes cell survival and repair after DNA dam-

age, is shown to be dynamically robust. Comparing with cell cycle network in budding yeast and fhgellanetwork in E. coli, we find the

signal-inhibitor-activator (SIA) structure in transcription regulatory networks. Seconds under the dynamical rule that inhibition is much

stronger than activation, we have searched 3-node nonself bop logical networks that are dynamically robust and that if the attractive

basin of a final attractor is as large as seven, and the final attractor has only one active node then the active node acts as inhibitor, and the

STIA and signal-inhibitor (SI) structures are fundamental architectures of robust networks. SIA and ST networks with dynamic robustness

against environment uncertainties may be selected and maintained over the course of evolution, rather than blind triakermor testing and be-

ing an accidental consequence of particular evolutionary history. SIA network can perform a more com plex process than SI network, and

STA might be used to design wbust artificial genetic network. Our results provide dynamical support for why the inhibitors and SIA/ST

structures are frequently employed in cellular regulatory netw orks.

Keywords:

Through the dynamical processes of interaction
networks between proteins, DNA and RNA, the liv-
ing cells execute various biological functions to re-
spond internal and external changes. Recently,
progress in molecular biology and high-through bio-
logical technology has revealed more detailed knowl-
edge about the protein interaction and transcription
regulatory networks. The major challenge is to find
the basic building blocks and the fundamental archi-
tectures of transcription regulatory networks, and to
highlight the relationship between structure and cellu-
lar dynamics or functions, then to reveal the design

principle of regulatory netw orks.

Previous studies have mostly concentrated on the
topological aspects of the networks, such as the scale-

free distribution, the motifs and modules of net-

(¥ The living cells accomplish biological

works
functions and responses to the change of environment
by activating or expressing different kinds of pro-
teins; these are dynamical processes. Now the molec-
ular details are lack to build an exact dy namical model
to simulate the biological processes and provide exper-
iment-testable predictions. In the absence of inform a-
tion about the kinetic constants and molecular details,

itis better to use a simple dynamical model, which

genetic network signal inhibitor-activator (SIA) structure Boolean network model dynamical robust.

ignores molecular details, to study the basic structure
of regulatory networks**. We had used Boolean
netw ork model to study cell-cycle regulatory network
in budding yeast, and found that yeast cell-cycle net-
wotk is robustly designed, the G1 state is a global at-
tractor of the dynamics, and the cell-cycle processis a
globally attracting trajectory of the dynamics 7.

The biological systems should be robust to func-
tion in the complex and uncertain environments. To
be more robust may mean to be more evolvable, and
thus easier to survive. Is the cell cycle network
unique to behave robustly ? Are there other regulatory
networks that also have the global robustness ? If
there are, what is the fundamental structure of these
netw orks ?7Here, we address the questions in dy nami-
cal robust view by Boolean network model simulation.
We first study whether SOS network in E. coli is
dynamically robust, and then try to find a roust
structure in cellular transcription regulatory net-
works. Second, we take dynamical robustness as a
criterion to find the fundamental architectures from 3
and 4 nodes non-self-loop logic networks. Finally, we
discuss the applications and evolution of robust net-
work structure.

* Supported by the National Program on Key Basic Research Projects (G rant No. 2003CB715900)
%% To whom correspondence should be addressed. E-mail: i fangting @ctb. pku. edu. en



1330 www. tandf. co. uk/ journals  Progress in Natural Science Vol. 16 No. 12 2006

1  Transcription regulatory networks with
dynamical robustness and the signal-inhibitor
activator structure

1.1 The SOS network in E. coli is dynamically ro-
bust.

In this section, we analyze the dynamical prop-
erties of SOS network in bacteria E. coli by Boolean
network model, using the dynamical rule that inhibi-
tion is much stronger than activation, which is alw ays
true in many bacterial regulatory networks. The SOS
network in E. li, which regulates cell survival and
repair after DN A damage, involves the inhibitor/ acti-
vator system of LexA and RecA, and more than 30
genes directly regulated by LexA and RecA. UV
DNA damage causes single-stranded DNA (ssDNA).
Upon binding to ssDNA, the RecA protein is activat-
ed (RecA ") and serves as a coprotease for the LexA
protein. When the concentration of LexA protein di-
minishes, the genes normally suppressed by LexA are
more frequently transcribed, such as umuDC and ssb
(single strand binding protein gene) that mediate
(67 We start from the
complex SOS network in Gardner et al.'®, and com-
bine the DNA repair proteins into UmuDC and SSB
then obtain a simplified 6node network
shown in the inset map of Fig.1. There are ssDNA,
RecA, inhibitor LexA, sigma70, UmuDC, and SSB
in simplified SOS network, where ssDNA represents
single-stranded DN A, RecA represents activated Re-
cA (RecA '), sigma 70 as 670 factor.
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Fig. 1.  Simplified SOS network in E. coli (inset map) and its
dynamical trajectories. Each state or node in the trajectory map is
noted by its decimal number. The biobgical trajectory cobred in
bhck starts from the ¥ 40 Start state with single-stranded DNA
and activated LexA, and evolves to the stable ¥ 8 attractor with
active LexA. In SOS netwotk, “ T”-line represents inhibition, ar-
row denotes activation.

A Boolean network model treats the nodes and
arrow s as logic-like operations. Each node i has only
two states S;=0 and S;=1

tive and active states of the protein, respectively.

s, representing the inac-

The time step is also treated as discrete step. The
protein (node) states in the next time step are deter-
mined by the protein (node) states in the present
time step via the following rule:

L 20a,8,()>0
J

S,-(t+1)= 0, Zags/‘(l‘)< 0. )

S, (1), Zai,S_,(z)zo
J

We take the dynamical rule that inhibition is
much stronger than activation, which is always true
in many bacterial regulatory networks and so we set
a;=1 for an activation arrow from protein j to pro-

tein i and a@;= — ©° for an inhibition arrow from j to
i. In the simulation, we settle the positive loop of
670 by giving a constant house keeping activation, so
once the lexA is tumed off, the 670 will be activated

and begin to transcribe umuDC, ssb and lexA genes.

We first simulate the biological process of SOS
network. Starting from the state with single-stranded
DNA and active inhibitor LexA (decimal number=
40), ssDNA triggers and activates the signal protein
RecA. After active RecA suppresses LexA at the 3rd
step ( #48), the 670 factors begin to transcribe and
translate UmuDC and SSB to repair DNA at the fifth
step ( #55).
muDC and SSB again, and the system evolves step by
step to a final stable state with active LexA, which
are listed in Table 1. This temporal trajectory is con-

The increasing LexA suppresses U-

sistent with the experimental data and gene expres-
sion datal "™ . The attractor state is {ssDNA, RecA,
LeXA, 0709 UmuDC9 SSB} — { 09 09 17 Oy 09 0}9 Wlth

only active LexA ( #8), and we name it active LexA

state.
Table 1.  The biological trajectory of the simplified SOS net-
work
Step ssDNA RecA LexA 670 UmuDC SSB Decimal ¥
1 1 0 1 0 0 0 40
2 1 1 1 0 0 0 56
3 1 1 0 0 0 0 48
4 1 1 0 1 0 0 52
5 1 1 0 1 1 1 55
6 0 0 0 1 1 1 7
7 0 0 1 1 1 1 15
8 0 0 1 0 0 0 8
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There are 2°= 64 states in SOS network. Evolv-
ing from each state, we obtain all the dy namic trajec-
tories of SOS network shown in Fig. 1, where each
node represents a possible state noted with its decimal
number, and the black line denotes biological trajec-
tory listed in Table 1. The #8 state with active Lex-
A state is the only global attractor attracting all the
64 initial states. When RecA suppresses active LexA,
070 can trigger DNA repair. Once LexA is active, it
will suppress UmuDC and SSB, and push the system
to evolve to the 8 attractor state with active LexA.

There are two major trajectories in the SOS net-
works starting from F40 and ¥ 42. The difference
between the two trajectories is whether UmuDC pro-
teins are activated at the start. If UmuDC proteins
are not activatd at the start (start from #40), thisis
the biological trajectory. The ssDNA will activate Re-
cA and cause the SOS response; the ssDNA will be
repaired at the end by the activation of UmuDC pro-
teins. However, if UmuDC proteins are activated at
the start (from ¥42), the activation of UmuDC pro-
teins will repair the ssDNA at the start but the ssD-
NA still activates RecA and causes the follow ing SOS
response. Thus, the difference between 56 state
(biological trajectory) and ¥ 24 state is only the acti-
vation of ssDNA at the beginning steps, and so do the

%48 and %16, ¥ 52and #20, ¥55and #23.

1.2 More transcription regulatory networks with
dynamical robustness and the signal-inhibitor-activa-
tor structure

The robust yeast cell-cy cle netw ork is constituted
by signal proteins, activator, inhibitors, and DNA
and spindle checkpoints[ O Whis, Sicl, Cde20
and Cdhl are inhibition or repression proteins in the
cell-cycle process; the inhibitor protein can provide a
threshold at the start of the process and repress the
signal and activator at the end of the process. For ex-
ample, Sicl provides a threshold for cyclin Clb5, 6 to
pass G1-S phase transition, while Cdc20 and Cdhl
degrade cyclin Clbl, 2 to let the cell exit from mitosis
and evolve to stable G1 state with active inhibitor
Cdh1. There are two kinds of repressors; one kind
provides threshold for signal to avoid random noise
triggering the cellular process, like Sicl and Cdhl/
APC in G1/S transition of yeast cell-cycle, and the
other kind suppresses the activator to an inactive level
at the end of the cellular process to make the system
stay at a stable state, like Cdc20/APC and Cdhl/
APC in M/G1 transition of yeast cell-cycle.

In the flagella network of E. coli, there are
three classes of gene transcription for flagellar assem-
bly. The master regulator FIhDC turns on class 11
genes, including FIiA and FlgM . A nd inhibitor FlgM
is used as checkpoint to block FiA. Only when basal
body-hook structures are completed and the FlgM is
transformed out of cell, can FLiA start the 3rd class
gene transcription including FlgM' '""'? | Therefore,
FIhDC acts as signal, FlgM as inhibitor, and FLA as
activator. The dynamics of flagella network is com-
plex for the protein degradation and FlgM transfor-
mation, and flagella netw ork is dy namically robust a-
gainst state change under a certain dynamical rule
(results omitted).

In Table 2, all the three cellular regulatory net-
wortks have inhibitors, and a signal-inhibitor-activator
(STA) structure is outlined: the signal node activates
activator; inhibitor represses signal node or activator.
Kirscher and Gerhart insisted that it is easy to find
repressor in the genetic regulator networks, and the
regulation of cellular processes is imposed chiefly by
inhibitiond ' . Why do cellular networks utilize in-
hibitors ? Do inhibitor and SIA structure benefit dy-
namical robustness of networks ? Fig. 2(b) shows a
SIA structure network is dynamically robust. More
evidence will be shown in the follow ing sections.

Table 2. The signalinhibitor-activator (SIA) structure in cel-
lular transcription regulatory networks

Signal nodes  Repressors or inhibitors A ctivators

SOS in E. coli RecA LexA 670
Flagellain E. coli ~ FlhDC FlgM FliA
Cln3 W hi5 SBF

Cell cycle inyeast ¢y 5/ b5 Siel /Cdhl, Cde20/Cdhl M eml

2 The3 and 4 nodes logic networks with dy-
namical robustness

In this section, we take the dynamical robust-
ness as a criterion to study the possible structures of
robust logic networks by Boolean network model.
The dynamical robustness is defined as that the net-
wortk has one global attractor with the biggest attrac-
tive basin. We search all possible 3node networks
and part of 4-node networks without self-loops.
There are 3 possible interactions from node A to node
B, inhibition, activation or none. All the possible
structures of 3-node networks without self-loop are
3973:729; all the possible structures of 4-node net-
works without self-loop are 3'® *= 531441. FEach
node in networks has two states. 0 and 1 represent
inactive and active states, respectively, and so there
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are 8 possible states for 3-node network and 16 states
for 4-node network. The number of all possible struc-
tures of 3 and 4 nodes netw orks is not too large to be
completely enumerated, and the dynamical property
of the small nodes networks is easier to obtain by
Boolean network model. Thus we can find the rela-
tionship between the network structure and its dy-
namics, where dynamics is related to the biological
function of networks, and long dynamical trajectory

can execute a complex biological process.

We focus on the dynamical rules that inhibition
is much stronger than activation (rule 1), and discuss
lately the rule that inhibition is equal to activation
(rule 2). We only discuss the networks without self-
loops, ignore the negative self-loops and positive self-
loops, where positive self-loop cannot trigger the node
state from inactive to active.

2.1 The 3-node networks with dynamical robust-
ness under the rule that inhibition is much stronger

than activation

We search for all possible 3-node netw orks with-
out self-loop (729 netw orks) under the rule that inhi-
bition is much stronger than activation; we find 28
un-isomorphic robust networks with the biggest at-
tractor basin equal to 7 (BB=7). There are 8 states
in a 3- node network, and the inactive state (0, 0, 0)
evolves to itself in Boolean network model, so the
biggest attracting basin is 7 for non-(000) attractors.
Classifying these 28 networks by their final attractor
states, there are 9 networks whose final attractor
state has only one active node— (100) attractor type,
14 networks whose final attractor state has two active
nodes—(110) attractor type, and 5 networks whose
final attractor state has all 3 active nodes—(111) at-
tractor type.

First we study nine (100) attractor type net-
works shown in Fig. 2(a). We find that node 2 re-
presses other nodes in all 9 netw orks, and node 1 and
node 3 will activate node 2 directly or indirectly. Un-
der rule 1, once node 2 is active, the other nodes will
become inactive in the next time step. We define
node 2 as inhibitor or repressor. Soin Fig. 2(a) node
2 acts as inhibitor, node 1 and 3 as signal or activator
node, and the final attractor state is (0, 1, 0). The
dynamical trajectory of network N1-1 is shown in
Fig. 2 (b). In the trajectory from (1,0, 0), the in-
hibitor is activated at the 3rd step and then suppresses
signal node and activator at the 4th step to (0, 1,0)

attractor. The states with inactive inhibitor have rela-
tively long steps process. Fig. 2 (¢) shows the dy-
namical trajectory of network N1-5, where inhibitor
represses both signal and activator.
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Fig. 2. Nine robust (100) attractortype 3-node networks with
BB=7 under the rule that inhibition is much stronger than activa-
tion. (a) Node 2 acts as inhibitor in the (100) attractor type net-
works, and networks I, 2, 3, 4 8 9 share SIA structure net-
works 5, 6, 7 share SI structure; (b) the root network N1-1 and
its dynamical trajectories; (c) the root network N1-5 and its dy-
namical trajectories.

These 9 networks can be generated from two ba-
network N1-1 and N1-5, by

adding inhibition (“T”-line) or activation (arrow ) in-

sic root netw orks,

teractions shown in Fig. 3. The 6 networks on the
root network N1-1 have the signal-inhibitor-activator
(STA) structure. The other 3 networks have signal-
inhibitor (SI) structure. Our results provide evidence
that the fundamental signal-inhibitor architecture pro-
vides dynamical robustness, so it may be produced
and maintained over the course of evolution.

N1-9 N1-4 NI-7
,\ T

N1-8 NI2 NI3 NI-6
T T

N1-1 N1-5

Fig. 3. The (100) network structure relation trees under the mle
that inhibition is much stronger than activation. The “T”-line from
network NI-1 to NI-2 represents that N1-2 can be generated from
N I- 1 by adding an inhibition action. T he arrow denotes adding acti-
vation actions and all the 6 networks on network N1-1 share the
SIA structure, networks 5, 6, 7 on network N1-5 share SI struc-

ture.
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On the other hand, SIA structure network N1-1
can generate 9 possible networks without self-loop,
including the 6 network with BB=7 in Fig. 2(a).
The other 3 networks have inhibition from node 1 to
node 2 whose BB is smaller than 7 (results omitted).

Then we provide a proof for the above results.
Using Boolean network model with the dynamical
rule that inhibition is much stronger than activation,
if the biggest attractor basin of the non-self-loop 3-
node network is 7 and the final attractor is (0, 1, 0),
then the network should have the following topologi-
cal properties;

(i) The node 2 should inhibit all other nodes di-
rectly. So node 2 works as an inhibitor. Otherw ise,
the state (1, 1, 0) or (0, 1, 1) should not evolve to fi-
nal attractor (0, 1, 0.

(ii) Other nodes should activate the inhibitor
node directly or indirectly. Otherwise, the state (1,
0,0) or (0, 0, 1) should not evolve to final attractor
0, 1, 0.

There are 14 (110) attractor ty pe netw orks and
5 (111) attractor type networks, whose final attrac-
tor state has 2 or 3 active nodes as shown in Fig. 4

(a) or Fig. 4(), respectively.
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Fig. 4. Robust (110) and (111) attractor-type 3-node networks
with BB=7 under the mle that inhibition is much stronger than ac-

vl

tivation. (a) 14 networks with two active nodes (110) attractor
type (b) 5 networks with 3 active nodes (111) attractor type. No

inhibitor node appears in netw orks.

In (110) attractor type netw orks, the activation
arrows appear more frequently with fewer inhibi-
tiors, and there is not any inhibitor-like node. We

have arranged the state of the biggest attractor as (0,
I, 1) with active nodes 2 and 3. Similar to (100)
type attractor, we can find and prove that the net-

works in Fig. 4(a) should have direct or indirect acti-
vation between nodes 2 and 3, while node 2 or 3
should repress node 1 to ensure that (0, 1, 1) is the
biggest attractor.

In (111) attractor type networks in Fig. 4(b),
there are activation and no inhibition, and each node
should activate other nodes directly or indirectly to
ensure that (111) is the biggest attractor.

The biggest attractor basin BB= 7 for non-self-
loop 3-node network is a strong constrained condi-
tion. Further discussion about n-node network with

BB=2"—1 can be found in Ref.[ 14] .

2.2 The 4node networks with dynamical robust-
ness under the rule that inhibition is much stronger
than activation

Adding a node as a functioning node of activator,
we search for 4-node networks without self-loop un-
der the two different rules, and under the constrained
conditions that; signal node (the node 1) activates
activator (the node 3), inhibitor (the node2) sup-
presses activator, activator activates function factor

(the node 4); and (1, 1,0, 0) state evolves to (0, 1,
0, 0.

Under the rule that inhibition is much stronger
than activation, we find 183 un-isomorphic networks
with BB> 11.
and obtain the probability of each element value in the
matrix (detail omitted). If the threshold is set to be
0.6, we obtain the network as shown in Fig. 5(a).
This network also has a (0, 1,0, 0) attractor with BB
=15 as shown in Fig. 5(b). We can find the similar
property to 3-node networks that once the inhibitor

We analyze their connection matrix,

node 2 is active, other active nodes will be suppressed
in one step, and all states with active inhibitor will e-
volve to attractor just in one step. Only the states
with inactive inhibitor have a relatively long steps
process to accom plish the complex biological process.

2.3 The 3 and 4 nodes netw orks with dy namical ro-
bustness under the rule that inhibition is equal to acti-

vation

Our previous study on yeast cell-cycle network
shows that the dynamical rule with equal inhibition
and activation (rule 2) produces similar results to a
Then we study 3-

node non-self-loop networks under the rule that inhi-

stronger inhibition rule (rule 17,

bition is equal to activation, and there are 20 un-iso-
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Fig. 5. A wbust 4 mode network (a) and its dynamical trajecto-
ries (b) under the rle that inhibition is much stronger than activa-
tion, where node 2 is an inhibitor and (0, 1, 0, 0) state is a global
attractor with BB=15.

morphic netw orks with BB=7. Classified by the type
of final attractor state, there are 8 networks in Fig. 6
(a) whose final attractor state has only one activated
node (0, 1, 0), and 7 networks have active nodes in
the attractors functioning as inhibitor or repressor ex-
cept network N2-8. There are 7 networks with BB=
7 and (110) attractor type whose final attractor state
has two active nodes, and 5 networks with BB=7
and (111) attractor type whose final attractor state
has 3 active nodes. We do not list (110) and (111)

attractor types networks here.
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Fig. 6. Robust 3-node networks and their network structure rel-
tion trees under the rule that inhibition is equal to activation. (a)
Eight 3node networks with BB=7 and (100) attractor type, they
are the same as netw orks under rule 1 except N2-8, node 2 acts as
inhibitor except in network N2-8; (b) the relation trees, all the 4
netw orks on the root network N2-1 share the SIA structure.

These 8 networks with the attractor state of (0,
1, 0) constitute a two-root tree in Fig. 6(b). Tt can

be seen that the network N2-8 is alone, and the 4
networks on N2-1 also have the SIA structure. The
networks 1—7 share the same structure under rule 1
and rule 2. The network N2-8 is the only one that
has no inhibitor and is separated alone from the main
structure tree.

Under this equal rule, we also search for 4-node
netw orks without self-loop, and find 161 un-isomor-
phic netw orks with BB>11. If the threshold is set as
0.6, we obtain the network similar to the network in
Fig. 5(a) but with an inhibition from node 3 to node
1. This network has one attractor (0, 1, 0, 0) with
the biggest attractive basin of 15.

We have also analyzed the 3-node netw orks with
BB= 6 under the above two rules. There are also
some network structure trees and several inhibitors
but no global inhibitors and STA structure.

3 Discussion and conclusion

In this section, we first summarize our results on
robust genetic and logic networks, and then discuss
the application of SIA/SI structure in cellular regula-
tory networks. Finally, we infer the evolution history
of robust cellular regulatory networks.

Using Boolean network model, we have studied
the dynamical robustness of cellular regulatory net-
works. Our results show that yeast cell-cycle net-
work' 7, SOS network and flagella network in E.
wli are dynamically robust against state fluctuation,
and inhibitors and signal-inhibitor-activator (SIA )
structure play a crucial role in ensuring network ro-
bustness.

Then taking dynamical robustness as a criterion
and under the stronger inhibition dynamical rule, we
find some structural properties of 3-node non-self-loop
logic netw orks with BB=7:

(i) Nine (100) attractor type networks are
shown in Fig. 2(a), where inhibitor node appears in
all nine networks, and STA and signal-inhibitor (ST)
structures are the fundamental framework, where in-
hibitor node is defined as the node repressing other
two nodes.

(ii) There are fourteen (110) attractor type net-
works in Fig. 4(a) that have inhibitions but no in-

hibitor-like node. Fig. 4(b) illustrates the five (111)
attractor type networks, whose nodes activate each
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other without any inhibition.

The 3-node networks are the minimal logical
representations of cellular transcription regulatory
networks. The STA and ST structure (100) netw orks
in Fig. 2(a) are dynamically robust with the active
node in the final attractor as inhibitor. These net-
works are convenient to be employed in cellular regu-
latory networks. The active inhibitor represses other
nodes and only when the inhibitor is repressed can
the signal trigger activator to accomplish the long pro-
cess. Forexample, RecA in SOS network suppresses
inhibitor LexA at the beginning of DNA repair pro-
cess as shown in Fig. 1. After the completion of
DNA repair, the re-activated LexA will push the sys-
tems back to stablize attractor with active LexA. In
yeast cell-cycle network, the cell size signal triggers
Clnl, 2, then Clnl, 2 degrades Sicl and Cdh1/APC
to start a DN A replication process, lately re-activated
inhibitors Cdh1/APC, Cdc20/APC and Sicl will
push the cell to exit from mitosis. One cell is divided
into two, then the system evolves back to stable G1
attrz?(%tor states with active inhibitors Cdhl/APC and
Sicl' ™.

However, the network with (110) attractor in
Fig. 4(a) may be difficult to use in cellular netw orks
with the 2 active nodes state in the final attractor.
The (111) networks in Fig. 4(b) resemble a “ ring”
signal transduction pathway with a series of activa-
tions but the active kinases in cellular signal trans-
duction pathway become inactive gradually.

Elowitz and Leibler had constituted a three-inhi-
bition circuit to perform oscillation in E. /i, but it
(3 | Tnhibitors and SIA structure
networks may be useful for designing robust artificial

is sensitive to noise

genetic circuits against protein abundance noise. In
cellular genetic regulatory networks inhibitor and re-
pressor proteins appear frequently, and the regulation
of cellular processes is imposed chiefly by inhibitions,
and these inhibitions are often relieved by another in-
hibition, Based on SIA

structure, introducing the inhibitor-function node

. .. [13
producing activation

that represses others, we may establish robust genetic
networks. The designed robust genetic networks
should take into account the self-loops and molecular
details of genetic network, where positive feedbacks
always provide a threshold for the signal and a poten-
tial irreversible protein state pattern transition''® .
The robust networks with molecular details may be

studied by ordinary differential equation (ODE) mod-

el to put forward some experiment-testable predic-
tions.

Murray put forward a hypothesis about the evo-
lutionary history of cell-cycle regulatory netw ork:
first the inhibitor appeared, then the checkpoint-like
inhibition, and then the checkpoints appeared ' .
Follow ing Murray, we guess the evolutionary trace of
cellular regulatory networks from the dynamic view.
First, the earliest and simplest networks may be a
two-component system in bacteria and linear signal
transduction cascades in eukaryote with signal and ac-
tivators without inhibitors. The linear signal trans-
duction cascade is that a protein activates a receptor
protein, and the receptor activates its following pro-
tein. Second, the cells should have evolved to the sig-
nal, activators and inhibitors system, and inhibitors
and SIA structure may provide dynamical robustness.
Finally,

event order of biological processes, and several signal-

checkpoints are introduced to ensure the

inhibitor-activator networks are coupled together with
checkpoints to govern more complex processes like
cell-cycle process. The evolution may begin from lin-
ear cascades with signal and activators, to robust SIA
or SI networks with inhibitors, and then to couple
several SIA networks by adding checkpoints. These
gradually ensure the network dynamical robustness
and reliability of cellular event order. During the
course of evolution, the dynamical robustness may be
used as a design principle to select and refine the ge-
netic regulatory networks. Our further work is to
study the large-sized logic networks and their struc-
ture robustness.

Robustness is an essential property of biological

(1819 10 this papers the dynamical robust-

systems
ness is defined as that the network has one global at-
tractor with the biggest attractive basin. Using
Boolean network model, we have found the robust
SIA/SI architectures from both cellular transcription
regulatory networks and logic networks. The signal-
inhibitor-activator (STA) structure is that signal node
triggers activator; inhibitor represses signal node and
activator. Our results provide a support for why the
inhibitors and SIA structure are frequently employed
in cellular regulatory networks. In the future, we
will design and refine robust genetic circuits against
external and internal fluctuations based on the robust

SIA networks.
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